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Abstract

This work proposes a new output-only modal analysis method to extract mode shapes and natural
frequencies of a structure. The proposed method is based on an approach with a single-degree-of-freedom
in the time domain. For a set of given mode-isolated signals, the un-damped mode shapes are extracted
utilizing the singular value decomposition of the output energy correlation matrix with respect to sensor
locations. The natural frequencies are extracted from a noise-free signal that is projected on the estimated
modal basis. The proposed method is particularly efficient when a high resolution of mode shape is
essential. The accuracy of the method is numerically verified using a set of time histories that are simulated
using a finite-element method. The feasibility and practicality of the method are verified using experimental
data collected at the newly constructed King Storm Water Bridge in California, United States.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Critical structures such as bridges, aircrafts, spacecrafts and offshore platforms are designed for
specified service lives. Unanticipated hostile loading environments may decrease the service life of
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

ci(t) the ith modal contribution factor of
displacement at time t

_ciðkÞ the ith modal contribution factor of
velocity at the sample time k

€ciðtÞ the ith modal contribution factor of
acceleration at time t

€ciðkÞ the ith modal contribution factor of
acceleration at the sample time k

€ci the N � 1 matrix containing €ciðkÞ

with k ¼ 1; . . . ;N
dj(k) the jth noise contribution factor at

the sample time k
€dj the N � 1 matrix containing €djðkÞ

with k ¼ 1; . . . ;N
€etðkÞ the p � 1 matrix denoting a trunca-

tion error on acceleration at the
sample time k

€ef ðkÞ the p � 1 matrix denoting a noise on
acceleration due to filtering at the
sample time k

Ei the p � p matrix denoting output
energy correlation of the ith mode

F sampling rate (Hz)
Ff folding frequency (Nyquist frequency)
n number of dominant poles within Ff

N number of samples in measured time
history

MAC modal assurance criteria
mdof multi-degrees-of-freedom
p number of sensors
sdof single-degrees-of-freedom
SVD singular value decomposition
T sampling period (s)
TDD time domain decomposition
U the p � p matrix containing singular

vectors of Yi

y(t) the p� 1 matrix containing yj(t) with
j ¼ 1; . . . ; p

yj(t) displacement on the jth sensor node
at time t

€yðtÞ the p � 1 matrix denoting output
acceleration profile at time t

Yi the p � N matrix containing mode-
isolated output acceleration time
histories

si noise singular values of Yi

O the p � p diagonal matrix containing
singular values of Yi

ui the p � 1 matrix denoting the ith un-
damped mode shape (eigenvector)

jji the jth component of ui

wj the p � 1 matrix denoting the jth
noise basis

cij the jth component of wj
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such structures. In order to ensure their healthy operational condition, periodic inspection and
maintenance of these structures are essential.

Remote controlled, automatic health monitoring of such systems has been recently become a
popular research issue [1]. However, a prerequisite of such applications is modal testing and
analysis. Ambient modal analysis techniques are particularly attractive to civil engineers, since the
so-called output-only modal testing methods require no additional equipment to excite the
structure being tested. Techniques that utilize ambient excitations make use of pre-existing
external forces resulting from wind loading, traffic loading, and ocean waves. Consequently,
output-only methods are relatively nonintrusive and inexpensive as compared to the forced
excitation methods.

The peak-peaking technique [2] is one of the more widely used ambient modal analysis
methods applied to the extraction of modal parameters of large civil engineering structures.
Although the peak-peaking technique is straight forward, its accuracy of modal parameters
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estimation is known to rely heavily on the frequency resolution. In order to overcome this
drawback, many notable works have been done on the subject of the time domain. One of the
memorable efforts is the Ibrahim time domain (ITD) method developed by Ibrahim [3]. The ITD
method can extract modal data sets from free decay responses obtained using the random
decrement (RD) technique [4]. The ITD method has been widely applied to aerospace structures
by Ibrahim [5], and has been recently applied to certain civil engineering infra structures by
Asmussen [6]. However, the ITD method for modal parameter extraction relies on the extracted
free decay function of the response. Hence, a high level of operator interaction is required to
obtain the RD function. In addition, one of difficulties of the ITD method is the occurrence of
fictitious modes that are caused by either noise or other irregularities in the measured data [7]. A
more advanced technique designed to overcome such difficulties is often cited in technical
literature; this is Juang’s [8] eigensystem realization algorithm with data correlation (ERADC)
method. The ERADC method is based on the realization algorithm, which is an identification
process of a discrete state-space model from a pulse-response of a system. Although the ERADC
method is systematic and relatively accurate, the method still shares the difficulties of the ITD
method. In addition, when a large number of time samples are collected at a large number of
locations, the ERADC method requires heavy computations due to the singular value
decomposition (SVD) process.

An outstanding progression in the frequency domain approach is the frequency domain
decomposition (FDD) method by Brinker et al. [9]. The FDD method identifies the mode shapes
and damped natural frequencies of a dynamic system by applying the SVD technique to the
output spectral density matrix. This is done under an assumption of white noise excitation. The
damping ratio and un-damped natural frequency are estimated from a mode-isolated, free-decay
response obtained via an inverse Fourier transform of the output spectrums after applying a zero
padding technique. Although the FDD method is much more advanced as compared to the peak
picking method, the FDD method still requires a massive numerical computation attributable to
the SVD process in the frequency domain.

Some vibration-based nondestructive damage evaluation techniques such as the damage index
method by Stubbs and Kim [10] or mode shape curvature method by Pandey et al. [11] require the
sufficient spatial resolution on mode shapes. Furthermore, an accurate estimation of mode shape
for higher modes also requires a higher resolution of sensor spacing due to the sampling theorem.
In such applications, the previously mentioned ambient modal analysis techniques may be
computationally inadequate. This is because the size of the resulting system equations to be solved
is associated not only with time or frequency samples, but also with the number of sensor
locations. As a consequence, the large amount of numerical computation retards the real-time
implementation of the previously mentioned modal analysis method. In order to overcome such
shortcomings, there exists a need to develop a computationally efficient ambient modal parameter
extraction technique for use in situations where a large number of sensor locations are involved.
Furthermore, there is also a need to reduce the high level of operator interaction in favor of the
automatic algorithm that is essential to the on-line application.

The objective of this work is to present a new technique to extract modal parameters using
output-only responses when a large number of sensors are used. The following three steps are
performed to achieve this objective. First, the theoretical background of the technique is
presented. Second, use of the technique is demonstrated through a numerical simulation. Third,
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the feasibility and practicality of the proposed technique are examined using data taken on a
bridge in service.
2. Theory

2.1. Extraction of mode shapes

Linear algebra theory explains that any vector can be spanned by its basis [12]. One basis
for the output response of a linear structural dynamic system consists of the underlying
orthogonal mode shapes. Consider the simple beam as shown in Fig. 1. The p � 1 output
displacement profile vector, y(t), caused by an arbitrary load at time t can be spanned by mode
shapes as follows

yðtÞ ¼
X1
i¼1

ciðtÞui; ð1Þ

where yðtÞ ¼ ½y1ðtÞ � � � ypðtÞ�
T is the displacement profile vector, and ui ¼ ½j1i � � � jpi�

T is the ith
mode shape, and the scalar values, ci(t), denote the ith modal contribution factor of the
displacement at time t. The subscript, p, denotes the number of sensors. Note that since the
number of modes resolved in a continuous response of a structure is infinite, the output
acceleration time history is given by

€yðtÞ ¼
X1
i¼1

€ciðtÞui; ð2Þ

where the dot denotes differentiation with respect to time.
Suppose that the continuous acceleration response is sampled at the rate of F ð¼ 1=TÞ samples

per second, where T denotes the sampling period. In order to prevent spectral aliasing at this stage
of the sampling process, the continuous acceleration responses are assumed to be pre-filtered
using low-pass analog filters limited to B Hz, where B denotes the desired bandwidth of the
samples. The sampling frequency, F, is selected such that F42B: Since the sampled acceleration
responses are collected at multiple sensor locations, the sequences can be classified as a multi-
output system with multi-degrees-of-freedom (mdof). Under the assumption that n dominant and
well-separated poles are resolved in the discrete acceleration response within the folding frequency
ðFf ¼ F=2Þ; Eq. (2) can be written as

€yðkÞ ¼
Xn

i¼1

€ciðkÞui þ €etðkÞ; ð3Þ
2 . . .1 p−1 p

Fig. 1. Location of sensors on a beam.
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where the p � 1 vector, €etðkÞ ¼
P1

i¼nþ1 €ciðkÞui; denotes a truncation error at the sampling
time, k.

Single-degree of freedom (sdof) approaches assume that in the vicinity of a resonance, the
behavior of the system is dominated by a single mode [7]. Unlike mdof approaches, sdof
approaches have only a single mode and therefore have no chance of false identification of
fictitious modes. This assumption reduces the level of operator interaction during on-line
monitoring of modal parameters. However, most time responses measured from a real structure
are a class of the mdof signal. Hence, to avoid such problems there exists a need to, as a
prerequisite, extract the mode-isolated sdof signals from a mdof signal.

In the mode isolation process shown in a recent application by Farrar and James [13], the auto-
spectrum magnitude on either side of a particular peak is replaced by zero. This approach requires
a Fourier transformation of the time responses, and if the start and end-time samples of the
measured mdof time response do not match, then leakage may occur. Hence, a high level of
operator interaction is necessary and the aforementioned isolation technique may not be adequate
for on-line health monitoring systems.

An alternative approach that allows circumvention of this problem is to use filter theory. A
digital band-pass filter is attractive because no hardware is required [14]. Once a digital band-pass
filter is properly designed for a certain frequency band that contains only a single mode, the filter
can directly create sdof time responses from the measured mdof response using state-space
simulation [12]. Thus, for each visually identified frequency bandwidth, a digital band-pass filter
can be readily designed, and a mode-isolated discrete-time response can be created. Note that the
contribution of the truncation error of the created mode isolated signal shown in Eq. (3) is
insignificant. This is because the band-pass filter weighs its pass band to unity and weighs the
other frequency components to zero.

If the mode-isolated signals are available, the ith filtered sdof acceleration response, €yiðkÞ can be
given by

€yiðkÞ ¼ €ciðkÞui þ €ef ðkÞ; ð4Þ

where the p � 1 vector, €ef ðkÞ; denotes the noise at the time sample, k, due to both the band pass
filtering and the residuals of €etðkÞ: Suppose that the p � 1 mode-isolated sdof acceleration vector
at the sample, k, contains the modal space and orthogonal noise space. In this case, the dimension
of modal space is only one (the ith mode shape vector) and the dimension of noise space is p 
 1:

The p � 1 noise vector, €ef ðkÞ; can be spanned by its bases at the sample time k:

€ef ðkÞ ¼
Xp
1

j¼1

€djðkÞwj; ð5Þ

where the p � 1 vector,wj ¼ ½c1j � � � cpj�
T; denotes the jth orthogonal noise bases and scalar

€djðkÞ denotes the contribution of the jth noise mode to the total noise vector at the sample time k.
By substituting Eq. (5) into Eq. (4), the mode-isolated acceleration vector at time sample k can

be described as

€yiðkÞ ¼ €ciðkÞui þ
Xp
1

j¼1

€djðkÞwj: ð6Þ
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If N samples are measured, the matrix form of Eq. (6) becomes

€y1ið1Þ � � � €y1iðNÞ

..

. . .
. ..

.

€ypið1Þ � � � €ypiðNÞ

2
664

3
775 ¼

j1i

..

.

jpi

2
664

3
775 €cið1Þ � � � €ciðNÞ½ � þ

Xp
1

j¼1

c1j

..

.

cpj

2
664

3
775 €djð1Þ � � � €djðNÞ

h i
: ð7Þ

Eq. (7) can be written more conveniently as

Yi ¼ ui €c
T
i þ

Xp
1

j¼1

wj
€d
T

j ; ð8Þ

where the p � N matrix, Yi, denotes the mode-isolated output acceleration time history that
contains only the ith mode. The N � 1 vector, €ci � €cið1Þ � � � €ciðNÞ½ �

T; denotes the ith modal
contribution of the acceleration time response. The N� 1 vector, €dj ¼ ½ €djð1Þ � � � €djðNÞ�T; denotes
the jth noise contribution.

Consider a cross-correlation Ei of the ith mode-isolated acceleration time history signals. In
said case, the p � p matrix, Ei, can be interpreted as the energy correlation of the ith mode with
respect to the location of the sensors

Ei � YiY
T
i : ð9Þ

Substituting Eq. (8) into Eq. (9) yields the results

Ei ¼ ui €c
T
i €ciu

T
i þ ui €c

T
i

Xp
1

j¼1

€djw
T
j þ

Xp
1

j¼1

wj
€d
T

j €ciu
T
i þ

Xp
1

j¼1

Xp
1

k¼1

wj
€d
T

j
€dkw

T
k : ð10Þ

Now suppose that any 1 � N row vector of Yi in Eq. (8) consists of the modal space and
the orthogonal noise space. The modal space will consist of one basis vector which denotes
the ith modal contribution time history €ci: The noise space will consist of p 
 1 bases which
denotes the jth noise contribution factor €dj for j ¼ 1 to p 
 1: For the orthogonal bases, it can be
shown that [15]

€cTm€cn ¼
qm; m ¼ n;

0; man;

�
€d
T

m
€dn ¼

sm; m ¼ n

0; man

�
and €cTm €dn ¼ €d

T

m€cn ¼ 0: ð11Þ

Therefore, Eq. (10) becomes

Ei ¼ uiqiu
T
i þ

Xp
1

j¼1

wjsjw
T
j ; ð12Þ

where the scalar values, qi � €cTi €ci and sj � €d
T

j
€dj; physically denote the level of energy at the modes,

i and j, respectively.
Eq. (12) may be rewritten as

Ei ¼ UOUT; ð13Þ
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where the p � p matrix, U � ui w1 � � � wp
1

� 
; is a singular vector matrix of Yi, and the

p � p diagonal matrix, X � diag qi s1 � � � sp
1

� 
; is a singular value matrix of Yi. The

underlying assumption in the order of the singular values is that qi4s14 � � �4sp
1: Therefore,
the desired ith un-damped mode shape, ui, which is a p � 1 real vector, can be obtained by taking
the first singular vector after a SVD, of Ei [15].

The output energy correlation matrix of the ith mode, Ei, can be readily computed from the
mode-isolated acceleration sequence by using a simple matrix multiplication in Eq. (9). The
noise singular values, s1; . . . ;sp
1; should be zeros in the case of noise-free signals. For noisy
signals, the noise singular values are nonzero but are small compared to qi. The extracted singular
values can be physically interpreted as an energy level of the time samples that is contributed by
the corresponding mode.

For velocity and displacement response measurements, Eq. (4) can be replaced by
_yiðkÞ ¼ _ciðkÞui þ _ef ðkÞ; and yiðkÞ ¼ ciðkÞui þ ef ðkÞ; respectively. Although the modal contri-
bution factors of those measurements are of different quantities, the mode shape is the
same as with the acceleration measurement. Hence, the identical procedure can be applied
to the case of velocity and displacement response measurements without any loss of
generality.

The described technique to extract mode shapes is subsequently refereed to as time domain
decomposition (TDD). In summary, the presented TDD technique involves three steps. First, a
digital band-pass filter that will isolate each target mode is designed, and the filtered time histories,
Yi, which contain the isolated mode are generated. Second, the output energy correlation matrix,
Ei, in Eq. (9), is constructed. The SVD of the matrix Ei, using Eq. (13), is performed next. Finally,
the first column vector of the singular vector matrix, U, is designated as the un-damped mode
shape for the isolated mode.
2.2. Extraction of natural frequencies and damping ratios

Pre-multiplication of the transpose of the identified ith mode shape on Eq. (8) yields

uT
i Yi ¼ uT

i ui €c
T
i þ uT

i

Xp
1

j¼1

wj
€d
T

j : ð14Þ

The second term on the right-hand side of Eq. (14) vanishes because the noise
bases are assumed to be orthogonal to the modal bases. The 1 � N time history vector
which denotes the ith modal contribution factor of acceleration, €cTi ; can now be obtained by using
Eq. (14)

€cTi ¼
1

uT
i ui

uT
i Yi: ð15Þ

This signal contains a single-output sdof system that represents the ith modal behavior of the
acceleration for the entire set of p signals. Therefore, the auto-spectrum of €cTi contains one peak.
The frequency at the peak is the desired damped natural frequency of the ith mode. For each
mode, the traditional modal analysis methods such as the peak-peaking method or the ERADC
method can be used to extract the damping ratio and natural frequency from the sdof signal, €cTi :
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Note that the orthogonal spatial noise resolved in Yi is filtered out from €cTi ; which is completed by
multiplying the identified mode shape vector. Also, note that the right-hand side of Eq. (15) is
identical for both the displacement and velocity signal measurements. Hence, Eq. (4) is still valid
for such measurements without any loss of generality.
2.3. Features of TDD

The TDD technique presented here first efficiently extracts mode shapes, and then identifies
the corresponding natural frequencies. The underlying assumption of the proposed
TDD technique is that the solution is separable into functions of time only and space
only. Simplicity and efficiency are the fundamental advantages yielded by the separation
of variables. The first step in the proposed TDD technique is only related to identification of
spatial variables such as mode shape. The second step is only related to identification of temporal
variables such as natural frequencies and damping ratios. Therefore, the separation of these two
individual steps in the TDD technique is necessary as to share the advantages of variable
separation.

Although the TDD technique requires frequency information for the filter design and natural
frequency extraction, the computationally intensive part of the method deals with time domain
data. In addition, the computationally intensive SVD process requires only n iterations for the
p � p matrix if p signals are measured and n modes are resolved in the signals. Because the size of
the SVD is dependent on the number of sensors, we can significantly save computing time and
reduce required memory by using the TDD technique when n � p:

In the ERADC method, spatial variables and time variables are identified simultaneously.
Consequently, the size of the block correlation Hankel matrix required for the SVD process relies
on the number of sensors, length of data, and the number of correlation time lags. Hence,
numerical complexity greatly increases with increases to the number of sensor locations and
length of data.

Furthermore, for ideal cases, accuracy does not depend on the number of sample points or the
frequency resolution to extract mode shapes. Thus, the identified mode shapes converge very
quickly with respect to the number of sample points. Therefore, the TDD technique is especially
useful for ambient modal analysis of large structures because their lower frequencies are of
interest in the most engineering applications. Also, the TDD technique may be implemented in
real-time applications since the filtering preprocess for mode isolation can be realized by means of
an electronic circuit and a simple SVD.
3. Numerical example

Consider the simple supported beam shown in Fig. 1. The length of the beam is 30m, and 11
accelerometers (p ¼ 11) are placed on the beam with an equal spacing of 3m. The second moment
of cross-sectional area, Young’s modulus, and density of the beam are 1.0m4, 20GPa, and
2.7� 103 kg/m3, respectively. The finite element (FE) model consists of 100 linear elements (101
nodes), each with a uniform length of 0.3m. From the FE analysis, the un-damped natural
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frequencies for the first, second, and third bending modes are 1.98, 7.90, and 17.78Hz,
respectively.

Given a unit pulse load at the third sensor, the acceleration time responses at all of the
sensors are simulated using the FE software package ABAQUSs [16]. The simulation makes
use of the modal superposition technique after the completion of an eigenvalue analysis
of the structure. The damping ratio used here is 0.015 (a typical value for lightly damped
structures) for all modes. With a sampling period of T ¼ 0:015 sec, the 1024 samples (N ¼ 1024)
of transverse degrees of freedom are collected at the 11 sensor locations. The typical acceleration
time history and its corresponding auto spectrum at the fourth node are shown in Figs. 2 and 3,
respectively.

The first step of the process involves designing a digital band-pass filter for each of the three
modes. As shown in Fig. 3, the first three peaks range from 1 to 3Hz, from 7 to 9Hz, and from 17
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to 19Hz, respectively. A third-order Butterworth digital band-pass filter is designed for each
frequency range. Three 11� 1024 sets of mode-isolated time histories are created using a linear
system theory such as a discrete state space simulation [12].

Next, for each mode-isolated time history, the matrix multiplication in Eq. (9) is performed.
The three resulting 11� 11 matrices denote the energy correlation of each mode with respect to
the sensors spatial coordinates.

The next step involves performing a SVD analysis on each of the energy correlation matrices in
Eq. (13). Note that the size of matrix for the SVD analysis is only 11� 11 for each mode. For each
mode, the 11� 1 un-damped mode shapes vector is extracted by taking the first column vector
from the quantity U in Eq. (13).

The first three bending mode shapes to be identified are shown in Fig. 4. For the first
three bending modes, the modal assurance criteria (MAC) values between the estimated
mode shape and the eigenvector from the FE analysis are 1.000, 1.000, and 0.999, respectively.
For each mode, the extracted singular values imply the level of noise in the signal. Thus the
quantification of noise in the signal is a feasible task by means of inspecting the singular values.
For the extracted three bending modes, the ratios of the second singular values to first singular
values are 0.27%, 0.46%, and 6.30%, respectively. Theoretically the ratios should be equal to
zeros, so one may say that the numerical noises are involved with such levels in the time response
simulation.

The final step in the extraction of the natural frequency for each mode is to compute a single
representative sdof time history in Eq. (15). The ERADC method identifies the first three natural
frequencies are 1.98, 7.90, and 17.78Hz, respectively. The corresponding damping ratios from the
ERADC method are exactly 1.5% for all the three modes. Using the peak peaking method, the
first three damped natural frequencies with a frequency resolution of 0.1953Hz are 1.95, 7.81, and
17.77Hz, respectively. The corresponding damping ratios determined with Half-Power
Bandwidth method are 2.08%, 0.25%, and 0.04%, respectively.
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4. Field verification

4.1. Description of test structure

The King Storm Water Bridge is a two-span-reinforced concrete bridge located in the high
desert of Southern California in the United States. The temperature extremes exhibited at the site
are 49 1C in the summer and near freezing temperature in the winter. Daily temperature variations
are between 6 1C and 1 1C [17]. The bridge has a standard CALTRANS (California Department
of Transportation) reinforced monolithic cast-in-place slab deck design. The deck is 0.43m thick
and 13.1m wide, and is supported by two rigidly connected abutment walls and by six uniformly
spaced 380mm diameter pre-stressed concrete columns at mid-span. Each span of the deck is
10.0m long. The abutment walls are 0.77m thick� 2.0m deep and are supported by five 380mm
diameter pre-stressed concrete piles. The CALTRANS Type 25 reinforced concrete barrier rails
are placed along the longitudinal edges of the bridge, as depicted in Fig. 5.

4.2. Description of modal test

A roving sensor technique was conducted to record time data. Seven sets of a forced vibration
test (A, B, C, D, E, F, and G in Fig. 5) were scheduled to record 28 acceleration time responses
and force inputs. The reference point and an impact point were ‘A3’ and ‘I1’ shown in Fig. 5,
respectively.

Five PCB 393A03 ICP model accelerometers and a custom-made drop hammer were used to
obtain force time histories. The hammer tip was instrumented with 9.09 kN PCB 200C20
A1 A2 A3 A4 E1 F1 G1 

B1 B2 B3 B4 E2 F2 G2 

C1 C2 C3 C4 E3 F3 G3 
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= impact point

X 

Y 

= accelerometer

Fig. 5. Plan view and sensor layout of King Storm Water Bridge.
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piezoelectric load cell. The time data were acquired and processed with an eight-channel Zonic
Model 2300 signal analyzer. The sampling rate of the data logger was set to 1280Hz. Each sensor
recorded 5000 samples for each data set. A typical acceleration time history at node ‘‘B3’’ is
shown in Fig. 6. All the power spectrum densities are shown in Fig. 7. A typical coherence
function of nodes ‘‘B3’’ and ‘‘C3’’ are shown in Fig. 8. The first seven frequencies are between 5
and 40Hz.
4.3. Output-only modal analysis using proposed method

Using only output acceleration time histories measured with the roving sensor technique to
extract mode shapes, natural frequencies and damping ratios first requires scaling the acceleration
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Fig. 6. Acceleration at node B3 due to impact load at node I1 of the bridge.
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Fig. 7. Power spectrums of sampled accelerations due to impact load at node I1 of the bridge.
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signals with respect to the reference time history. This is because the magnitude of input can be
arbitrary for each test set. The scaling processes consist of the following three steps: (1) Compute
transfer functions between a reference point and the other points. (2) For each transfer function,
replace the frequency components with zero except when the frequency is between 5 and 40Hz. (3)
Compute the scaled time history by taking the inverse discrete Fourier transformation of the
frequency filtered transfer function. Then the 28� 5000 scaled acceleration time matrix can be
constructed by putting together the 28 scaled acceleration responses. Next, the third-order
Butterworth digital band-pass filters are designed for the band-pass zones of A (11–12Hz), B
(16–17Hz), C (23–24Hz), and D (35–36Hz) as shown in Fig. 7. Here, the pass bands of the digital
filter are determined by inspecting the spectrums and the coherence functions of accelerations
shown in Figs. 7 and 8, respectively. The peaks are commonly observed at above selected
bandwidths in all the measured accelerations. For each designed filter, the 28� 5000 mode-
isolated scaled acceleration matrix is simulated in discrete state space. The typical spectrums of
mode-isolated sdof signals for the first pass band are shown in Fig. 9. After computing the 28� 28
energy correlation matrix from Eq. (9) for each mode, the SVD of each energy correlation matrix
exhibits an un-damped mode shape. The four estimated mode shapes are depicted in Figs. 10–13.
After using Eq. (15) to project the mode-isolated time signals on each previously identified
modal space, the un-damped natural frequencies are extracted using the ERADC technique,
and are 11.06, 16.93, 23.02, and 35.36Hz, respectively. The corresponding damping ratios
are 1.87%, 1.26%, 2.3%, and 0.36%, respectively. In order to compare the performance of the
TDD technique with a classic modal analysis method, the ME’scopeVES [18], an automated
software package for modal analysis of forced vibration tests, was used to extract modal
parameters from the test data. The rational fraction polynomial (RFP) method by Richardson
and Formenti [19] was applied to each set of test data consisting of inputs and outputs. For the
frequency zone used in the TDD, the estimated first natural frequencies using the RFP method
were 11.17, 16.40, 23.31, and 35.36Hz, respectively. For the four extracted mode shapes, the
MAC values between the TDD technique and the classic modal analysis were 0.98, 0.82, 0.85, and
0.90, respectively.
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Fig. 9. Power spectrums of the mode-isolated signals through a band-pass filter (11–12Hz).
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Fig. 10. The first mode shape of the bridge using the TDD technique.
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Fig. 11. The second mode shape of the bridge using the TDD technique.
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Fig. 12. The third mode shape of the bridge using the TDD technique.
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Fig. 13. The fourth mode shape of the bridge using the TDD technique.
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5. Summary and conclusions

The objective of this work is to develop an ambient modal analysis method that may be efficient
when a large number of sensor nodes are involved. Three tasks are conducted to achieve the
objective. First, the theoretical developments of the proposed method are presented. Second,
the proposed method is verified by a numerical study. Third, the feasibility and practicality are
examined through ambient modal testing of a bridge in service.

Based on results and interpretations, the following three findings and conclusions can be
addressed. First, the SVD matrix size of the proposed method relies on the number of sensors
instead of the number of time samples or frequency samples. Therefore, the proposed approach is
adequate to obtain spatially refined mode shapes. Second, the formulation of the proposed
method includes no assumption for the inputs. Therefore, the proposed method can extract un-
damped mode shapes for the arbitrary inputs related to the extraction of mode shapes. Third, the
mode isolation task completed by using a digital band-pass filter reduces the normally high level
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of operator interaction. Therefore, the proposed method can be applied to an automated on-line
health-monitoring system.

Despite its strong points, the TDD technique also has at least two limitations based on its
theoretical foundation. First, the proposed method is based on the sdof approach. Therefore, as
with other sdof methods, the extraction of modal parameters from closely placed modes is
difficult. However, the modes of typical civil engineering structures are well separated. Second, the
proposed method utilizes a mode-isolated time signal to extract natural frequencies. Therefore,
the band-pass filters may bias the damping estimation if the width of the pass band of the filter is
too thin.
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